

Assoc. Prof. Mohamed Frahat Foda

Associate Professor of Biochemistry, Agriculture Biochemistry Department,

Faculty of Agriculture, Benha University, Egypt

Email: m.frahat@fagr.bu.edu.eg

Univ. Website: Dr. Mohamed Frahat Foda

Contents

What is Nanoscience and Nanotechnology?

History of Nanotechnology

Fundamental concepts in Nanoscience and Nanotechnology

Sources of nanomaterials

Types of nanomaterials

Synthesis of nanomaterials

Characterization of nanomaterials

Applications of Nanotechnology

OVERVIEW OF NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE

- ► Nanotechnology and agricultural production developments
- ► Nanosensors for monitoring soil conditions and plant growth hormone
- ▶ Nanotechnology delivery systems for nutrients and plant hormones

OVERVIEW OF NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE

- Nanobiosensors
- Nanotechnology in irrigation water filtration
- **▶** Magnetic nanoparticles for filtration
- Detoxification or remediation of harmful pollutants
- ► Nanocapsules for efficient delivery of pesticides, fertilizers and other agrochemicals
- **▶** Nano based smart drug-delivery systems

- > Zeolites for water retention
- > Nanocoatings and nanofeed additives
- > Nanoherbicides
- > Nanotechnology in organic farming
- > Nanoparticles and plant disease control
- > Nanoparticles as pesticides

BENEFITS OF NANOTECHNOLOGY APPLICATIONS

An illustrative presentation of various applications of nanotechnology in agri-food sector.

Detection of nutrients and pathogens by biosensors and quantum dots Nano-scale carriers for targeting delivery by nanocapsules Wastewater treatment and disinfection by nanoparticles Bioremediation by nanoparticles Nanotechnology Applications in agriculture Recycling of agricultural wastes by nanoparticles Quality enhancement of agri-products by nanoparticles Identification and tracking of agrifoods by nanobarcodes Shelf-life enhancement of agricultural products by nanoparticles

Nanoparticles: Removal of Campylobacter jejuni from poultry. products Nanocides: Controlled release of pesticides. Nanotechnology Nanosensors: Detection of pathogens and contamination of packaged foods. Nanofibers: Strength of clothing. Nanocapsules, Dendrimers: Delivery of drugs.

The main applications of nanotechnology in agriculture are listed below:

- i. Determination of enzyme-substrate (E-S) interactions (by detection of single molecule).
- ii. For more efficient delivery of fertilizers, pesticides, vaccines, growth regulatory hormones and other chemicals using nanocapsules or nanotubes.
- iii. In genetic engineering of plants, delivery of desired DNA into the plants using nanoparticles.
- iv. Delivery of vaccines into plants using nanocapsules.
- v. The use of nanosensors for the detection of the plant pathogens, monitoring the soil conditions and plant growth, etc.

Top ten applications of nanotechnologies in the developing countries

Rank	Applications	Examples
1	Energy storage, production and conversion	CNT storage of H
2	Agricultural productivity enhancement	Herbicide delivery
3	Water treatment & remediation	Nano-membranes
4	Disease diagnosis & screening	Lab-on-Chip
5	Drug delivery systems	Nano-capsules
6	Food processing & storage	Coating/packaging
7	Air pollution & remediation	Nano-catalysts
8	Construction	Durability
9	Health monitoring	Sensors
10	Vector & pest detection/control	Sensors and pesticides

J. Farm Sci., 29(1): (1-13) 2016

Nanotechnology applications in agriculture and food production

In agriculture

- > Nano-Agriculture
- > Controlled environment agriculture (CEA)
- > Precision farming
- > Encapsulating control

In food production

- > Post harvest food processing
- > Food packaging

Application	Nano particles	Reference
A). Pesticide delivery		
Chemical		
Avermectin	Porous hollow silica(15 nm)	Li et al., 2007
Ethiprole or phenylpyrazole	Poly-caprola ctone(135 nm)	Boehm et al., 2003
Gamma cyhalothrin	Solid lipid (300 nm)	Frederiksen et al., 2003
Tebucanazole/chlorothalonil	Polyvi nylpyridine andpolyvinylp	Liu et al., 2001
	yridine-co-styrene(100 nm)	
Biopesticides		
Plant origin: nanosilica for insectcontrol	Nanosilic a (3-5 nm)	Barik et al., 2008
Artemisia arborescens		
Essential oil encapsulation	Solid lipid (200-294 nm)	Lai et al., 2006
Microganisms: Lagenidiumgiganteum	Silica (7-14 nm)	Vandergheynst et al., 2007
cells in emulsion		
Microbial product: absorption of	Chitos an/kaolin (250-350 nm)	Ghormade et al., 2011
Myrothrecium verrucaria enzyme		
B). Fertilizer delivery		
NPK controlled delivery	Nano-coating of sulfur (100 nm layer)	Wilson et al., 2008,
	Chitos an (78 nm)	Corradini et al., 2010
Genetic materia l deliveryDNA	Gold (10-15 nm) Gold (5-25 nm)	Torney et al., 2007,
	Starch (50-100 nm)	Vijayakumar et al.,2010,
		Liu et al., 2008,
Double stranded RNA	hitosan (100-200 nm)	Zhang et al., 2010
C). Pesticide sensor		
Carbofuran /triazophos	Gold (40 nm)	Guo et al., 2009
DDT	Gold (30 nm)	Lisa et al., 2009
Dimethoate	Iron oxide (30 nm), zirconium oxide (31.5 nm)	Gan et al., 2010
Organophosphate	Zirconium oxide (50 nm)	Wang et al., 2009
Paraoxon	Silica (100-500 nm) Carbon nanotubes	Ramanathan et al., 2009,
		Joshi et al., 2005
Pyrethroid	Iron oxide (22 nm)	Kaushik et al., 2009
Pesticide degradation Lindane	Iron sulûde (200 nm)	Paknikar et al., 2005 Guan et al., 2008 J. Farm
Imidacloprid	Titanium oxide (30 nm)	Guan <i>et al.</i> , 2008 J. F arm

J. Farm Sci., 29(1): (1-13) 2016

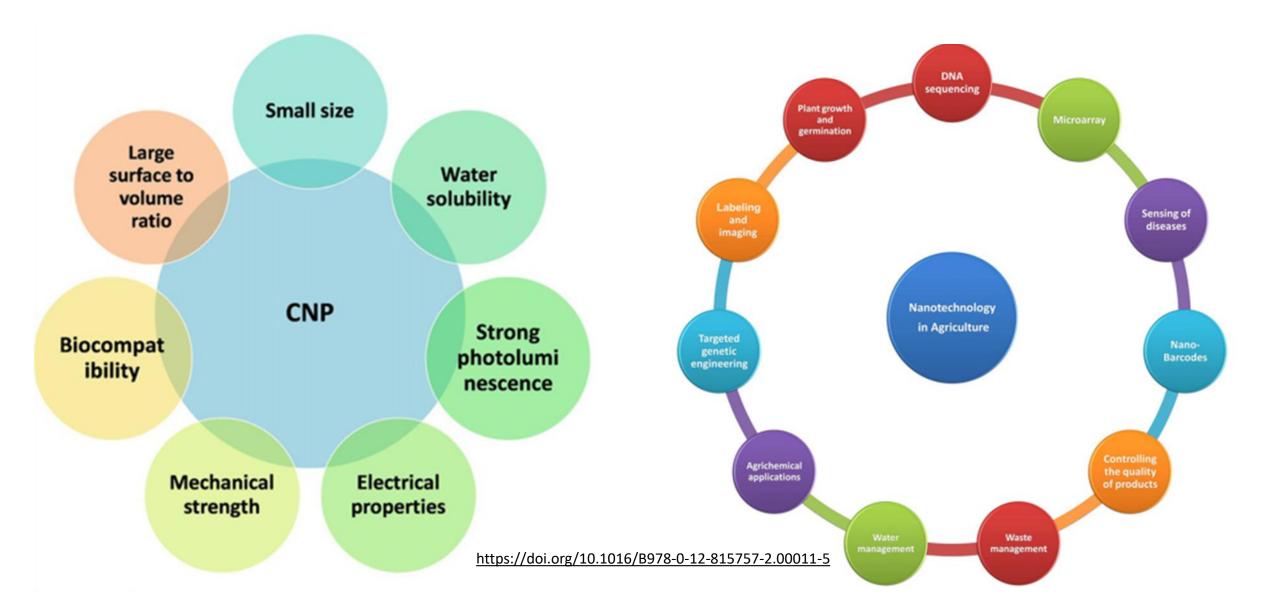


Table 2. Comparison of nanotechnologybased formulations and conventional fertilizers applications (Cui et al., 2010)

Properties	Nano-fertilizers-enabled technologies	Conventional technology
Solubility and	Nano-sized formulation of mineral micronutrients may improve	Less bioavailability to plants due to
dispersion of	solubility and dispersion of insoluble nutrients in soil, reduce soil	large particle size and less solubility
mineral micronutrients	absorptionand fixation, and increase the bioavailability	
Nutrient uptake efficiency	Nano structured formulation might increase fertilizer efficiency and uptake ratio of the soil nutrients in crop production and save fertilizer	Bulk composite is not available for roots resource and decrease efficiency
Controlled release modes	Both release rate and release pattern of nutrients for watersoluble fertilizers might be precisely controlled through encapsulation in envelope forms of semipermeable membranes coated by resin-polymer, waxes, and sulfur	Excess release of fertilizers may produce toxicity and destroy ecological balance of soil
Effective duration of nutrientrelease	Nanostructured formulation can extend effective duration of nutrient supply of fertilizers into soil	Used by the plants at the time of delivery, the rest is converted into insoluble salts in the soil
Loss rate of fertilizer nutrients	Nanostructured formulation can reduce loss rate of fertilizer nutrients into soil by leaching and/or leaking	High loss rate by leaching, rain off, and drift

Applications of Nanotechnology and Carbon Nanoparticles in Agriculture

Chapter 11 you need to read it carefully, I will add the chapter with the PowerPoint.

Nanotechnology Applications in Agriculture, Industry, and Medicine

- Synthesis and Applications of Nanofungicides:
- Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology
- Biological Nanoparticles: Optical and Photothermal Properties
- Biogenic Synthesis of Silver Nanoparticles and Their Applications in Medicine

You will find more details regarding slide in the following link: DOI 10.1007/978-3-319-68424-6

Download the book and read it carefully

